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Abstract. The deemination of the shape of a scatterer by nondestructive methods, such 
as scattering experiments, raises the question of indetermination or ambiguity problems for 
the scatterer’s shape, depending on the given scattering data. These ambiguity problems are 
discussed here by means of numerical conskuctions of equivalent scattering problems. ia. we 
determined scanems that produced the same scattering amplitude in given conditions (fixed 
energies, fixed incident angles andlor directions of receivers). This consmction is given in the 
context of a generalized scattering t h e w  that takes into m u n t  impedance discontinuities inside 
the scatterer. We started with a scattering problem defined by a discontinuous m e  of arbihary 
shape and defined by boundary conditions. Then, a drcnlar c w e  wilh appropriate boundary 
conditions was determined such that these two scattering problems yielded the same scanering 
amplitude within the given conditions. We also present numerical results for two particularcases 
of the generalized scattering theory, calculated by means of the Nprr6m method. We used these 
results to verify that the equivalence obtained in the Born approximation holds for the exact 
scattering amplitudes. 

1. Introduction 

From previous results [1,2], we know that the reconstruction of a finite scatterer by scalar 
wave diffusion is unique if the scattering data are known for all illumination angles and all 
receiver directions at a fixed energy. We have already shown [3] that if these conditions 
are weakened, we do not keep uniqueness of the shape determination. This paper gives 
further examples and demonstrations of this point. In particular, we present a different 
ambiguous case which contains the backscattering. We use the scattering theory in the 
Sabatis framework [4] corresponding to an impedance equation with discontinuity curves 
corresponding to a jump in the impedance and/or its normal derivative. We specialize to 
the two-dimensional case as in 131. Between these curves, the scatterer is assumed to be 
inhomogeneous, only allowing a smooth variation of parameters, such that the impedance 
is twice differentiable. We consider this model concentrating on the part that takes only 
discontinuities into account. In section 4 of [3], we showed that this restriction was relevant. 
Here we present a numerical treament of two particular cases of an impedance equation 
without diffuse scattering and we calculate the exact scattering amplitude using the Nystrom 
method, with a particular decomposition used by Kress [5] in order to isolate the logarithmic 
singularities of the two-dimensional case. Finally, we present a construction method for 
equivalent scattering problems and discuss numerical examples. 

t convat CNRS, GDR 264. 

0305-4470/94/062093+20$19.50 0 1994 IOP Publishing Ltd 2093 



2094 F Dupuy 

Figure 1. Scattering problem with discontinuities: shape of discontinuities. 

2. The scattering problem 

We start from the impedance equation 

(a-Zdiva2grad+kz - V ( x ) ) p ( k , x )  = 0 (2.1) 

where k, x E R2, a > 0 is defined inside domains Ql, Qz, . . . , Q N + ~ ,  such that Q i  n Qj = 0 
for any i # j ,  R2 = C,"'Ei. Si is the external boundary of Qi and the internal boundary 
of 'i&+1. The domains are ordered from Q1 to Q,+l and are all finite except S 2 ~ + 1 ,  which 
extends to infinity in all directions (see figure 1). In addition we assume that each Si is C2 
and that (Y is Cz inside Itz\& where S = UE,Si, with a ( x )  and aa(x)/au, going to finite 
limits at any point xi E Si as x + xi inside the domain Q i  or S2i+l, where U is a vector 
normal to St and pointing outwards, i.e. in Qi+l. At any point X ,  E S,, by labelling the + 
and - sides of U, as external and internal parts, we can characterize the jump of a and its 
derivative throughout S, by the following 'singular data': 

(i) Transmission and reflection factors 

(ii) Slope factor 

The impedance scattering problem was studied by Sabatier [4] in the three-dimensional 
case. Here we present the results for the two-dimensional case [3], first we have the 
following theorems. 

Theorem 1. p is a solution of equation (2.1) if, and only if, the function @ := wp is a 
solution of the chain of Schrodinger equations 

(2.2) (A + kz - V - a- 'A~)@(k ,  X )  = 0 x E Rz\S 

coupled with the condition of continuity of @/a and a(a@/au)  - @(aa/au)  through S. 
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Because of this theorem, there always exist two equivalent formulations of the same 
physical problem and it is useful to go back and forth from one to the other. In the 
impedance formulation of the scattering problem, 9(k, x )  is a solution of 

(a-'diva'grad+k' - V(x))p(k, x )  = 0 x E Rz (2.3) 

ps := u(x)yl(k, x) - exp[ik . x ]  is Sommerfeld outgoing, i.e. in two-dimensional cases: 

In the Schrodinger chain formulation, @(k, x )  is a solution of 

x E R2\S (A + k2 - V - a-'A01)@(k, X )  = 0 (2.5) 

@ + ( X ) / U + ( X )  = $-(x)/Cf-(x) x E s 
@(k, x )  - exp[ik . X I  is SommerfeId outgoing. 

We recall that this Schrb;dinger chain formulation was used to derive a generalized Lipmann- 
Schwinger equation and a scattering amplitude in two parts 141. One part is due to the 
discontinuities (related to (2.6), and denoted A& the other is due to diffise scattering in 
the presence of discontinuities (related to the potential V $. aA01, and denoted A I ) .  

In this paper we consider only the part due to the discontinuities. Using the same 
notation as in the previous paper, we denote h, as the solution to the scattering problem 
with only discontinuities, i.e. the solution of the following system: 

(A + k2)@ii.(k, x )  = 0 x E R2\S 
a @in aa 
av  a v  

@i,,/a and 01- - @in- continuous/S 

@i&, y )  - exp[i. XI is Sommerfeld outgoing. 

In order to solve this system we write u(x)  := @i.(k, x )  -e*', with 

(2.8) 

where Q(x ,  y) is the Helmholtz-Green function, i.e. 

(2.10) 

As in the threedimensional case, u(x) satisfies (2.8) as well as the Sommerfeld 

1 
@ ( x .  Y )  = qH:)(lkllx - YI) x ,  Y E R2, x # Y .  

condition. We determine 4j and @j by the continuity conditions (2.8). obtaining 

@ =2,9e'""+,9S@+@K@ 

4 + y @  = 28- - 2@'eik.'x + @T@ - @'K$ + @K'4 - @,'S6 aeik.x (2.11) 

av 
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with 

* j  = * for x E sj 

with 

C T(l- PK)-'BS + p1. (2.20) 

Proof. To show this result, we used the Riesz-Fredholm theory for compact operators. 
The uniqueness is assured because the kernels N[1- (B/1+p2)] and N ( l  - @ K )  are null. 
The existence for @ is guaranteed since pK is a compact operator. For @, the problem 
is with the operator T ,  as it is not bounded, but here it is shown as a product with other 
operators. Sabatier has demonstrated that (1 + j3')-*B is a compact operator. For more 
details see [4]. 0 

Now we define the scattering amplitude Ao, which is related to hn and is due to the 
discontinuities only. To obtain it, we apply Green's theorem to &(k, y )  and @(x, y) inside 
the domain defined by IyI Q R and y E S2~+1. before we let R + CO, and we obtain 
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with 

where k' := klZ. 
There is another expression for A0 in terms of @ and @. To obtain it, one puts 

the asymptotic expansions of O(x ,  y) and W ( x ,  y)/au, inside the definition (2.9) of U, 
obtaining 

Together with (2.21), one finally gets 

where k' = kf. 
It is possible to obtain the calculations of the first- and second-order terms with respect 

to the potential's size and to rp, sp, tp. In fact, with the assumptions of theorem 2, we can 
derive the following expansion up to second order in @ and @. 

We get the scattering amplitude at the first (Born approximation) and second order (quadratic 
approximation), by using relation (2.24) with these expansions of @ and @. 

The result can then be reduced to the simplest form by using the standard equivalence 
[4], which in the Bom approximation is 

3. Numerical resolution of two particular cases 

Now we present a numerical solution for @in in two special cases. In the first, only acu/aw 
is discontinuous and in the second the relative discontinuity cy+(x)/ar-(x) does not depend 
on the position of x on the surface. We recall that the general case, where Q and @ are 
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defined by (2.17) and (2.16), is much more difficult to solve because the operator T (in 
particular Ti) is not compact; a problem which must be circumvented. 

In order to solve the integral equations, we use the Nystrlim method and a particular 
decomposition of their kernels to circumvent the logarithmic singularity. This is done by 
applying the Kress method [5,6] (a numerical treatment of exterior boundary-value problems 
for the Helmholtz equation expressed by means of integral equations). 

First, we give results for the unicity and existence of @in for these particular cases. We 
then present the decomposition of kernels to be used in the Nystram method. Finally, we 
give the systems that are to be solved numerically and a convergence result. 

3.1. The two particular cases 

The first case is CY E CQR2). In this case we have ,¶ = 0 and from equations (2.17) and 
(2.16) we obtain the following system * = 0 (1 + B’s)@J = -2p’e’k-x. (3.27) 
Theorem 3. If p’ E C(S) and S is a bounded surface belonging to the class C2 then 
(1 + ,¶’S)-’ exists as a bounded operator on C(S). The solution of the system (3.27) is 

* = O  @J = -2(1+ p’S)-’p’e’k”. (3.28) 
Proof. We also applied the Riesz-Fredholm theory for compact operators. Using the result 
for the homogenous chain in [4], we know that if there exists a solution, it is unique. The 

For the second case, the relative discontinuity u+(x)/u-(x) does not depend on the 

existence holds in general because p’S is a compact operator on C(S) [Z]. 

position of x on the surface. We introduce the function u ( x )  defined by 
%‘+l(x) = 1 

u;(x) = ~ j + l ( x ) u - ( x ) / ~ + ( x )  

(A, + k2)u(x) = 0 x E R2\S (3.29) 

u(x)  and U’ [-- - E] ( x )  continuous through S (3.30) 

u(x) is Sommerfeld outgoing (2.4). (3.31) 
We seek u(x )  by using a single- and double-layer potential ansatz, which can be written as 

x E Q N + I  

x E Q j  i = 1,. . . , N. 
So to find fin, we pose U := u/u which solves the following system: 

U aa 
U a v  

and which satisfies (3.29) and (2.4). We obtain the following system by then imposing the 
continuity conditions (3.30). 

* = O  (3.33) 

(3.34) 

Notice that B does not depend on the position on the curve but ,& does in general. As in 
the previous case, we have a result of existence and uniqueness. 
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Theorem 4. If b, E C(S) and S is a bounded surface belonging to-the class C2 then 
(1 - PK' +,!?',!?)-I exists and is a bounded operator on C(S). The solution of the system 
(3.34) is 

$ = O  
(3.35) 

Proof: The proof is similar to the previous one. R e e d  that BK' and PS are compact 
operators. 0 

Remark. We recall that the previous results are valid for more than one curve. The 
following numerical method is also correct for more than one curve, but, for the sake of 
simplicity, we take only one. If we take several curves, the principal difficulty is only the 
size of the linear system to resolve, which increases quickly with the number of the curve. 
In effect, if you have a square matrix m x m for one curve, you obtain a matrix pm x p m  
for p curves. 

3.2. Numerical resolution 

For the numerical resolution, we assume that the curve S is star-shaped and belongs to the 
class C2. Its equation is of the form R = f(@), where f is a 2n periodic function. Then 
for two points x ,  y of S we can write 

Now, to solve the integral equations (3.27) and (3.34) we isolate the logarithmic singularities. 
By using Kress notation [5]. we obtain the following parametric form of S and K': 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

and 
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The logarithmic singularities’of S and K‘ are isolated if we write 

M ( x , y )  = M I ( x , y ) l o g 4  [ sin (ex ; e y ) ]  + Mz(x.  y )  

L’(x, y )  = L‘1 ( x  , y )  log 4 [ sin 2 3 p ]  + L’z(x, y )  

(3.41) 

(3.42) 

with 

(3.43) 

[ (e= 1 L’Z(X, y )  = L’(x, y )  - L’I(X, y)log4 sin 

(3.45) 

(3.46) 

In particular, for y = x ,  using the expansion of HO [6], we have 

M z ( x . x )  = 2 - 1 Y  - ir - - - 2x 1 log [;V(~J + ~ ( e ~ ) ) ] ]  JZGXG I ’  
The Nystrom method relies on approximating the integrals by quadrature formulae. To do 
this, we set the following expansion 

(3.47) 

where @ f ) ( ( y k )  are the values of @ at the 2n points yk, yk := k ( r / n ) ,  k = 0 , .  . . ,2n - 1, 
and the L F ) ( y )  are the Lagrange basis for the trigonometric interpolation defined by 

Hence we obtain 

(3.48) 
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with R f ) ( x )  := J,” de, log4[sinZ((0, - By)/2)]Lf)(y). 
This, after a few calculations, leads to [5] 

(3.49) 

The regular parts of the integrals are calculated by a trapezoidal method. We use. the 
same type of approximation in the second integral equation and we obtain the following 
approximate equations: 

#(n) (x)  + ~ ‘ ( x )  
2n-1 

[ R f ) ( x ) ~ I ( x ,  yk) + ’ ~ z ( x ,  yk)] #f)(yk) = - 2 ~ ‘ ( x ) e i k f ( ~ ~ ) ~ ” ( ~ = - 8 ~ )  
n k 0  

(3.50) 

K 2n-1 

+ b bf)(x)L‘l(x* Yk) f ,t‘Z(x. Yk)] #f)(Yk) 
k=O 

= - ~g’eikf(Bz)ws(B~-Bd + 2i&v,j . k)@f(&)cos(&-Bd. (3.51) 
Finally we must solve finite linear equations obtained by Writing equations (3.50) and 

(3.51) at quadrature points #,!(xj), xj := j (n/n) ,  j = 0, . . . ,2n - 1. These systems are: 

n 2n-1 

@:)(xj) +  xi) [ R f f ( x ) ~ l  (x j .  Y ~ I  + ,Mz(xj, Yk)] 4 ; ) ~  
k=O 

- - - 2B~(n  I .)eikrc.j) cos(+k) (3.52) 

x 2 - 1  

# y ) ( x j )  + s’(xj)  [IRf)(x)MI ( x j ,  Yk) + ;MZ(xj, Yk)] 4f)(Yk) 
k=O 

n 2n-1 + p F ) ( X j ) L ‘ l ( x j ,  Yk) + -L’Z(xj. n yk)]#f)(yk) 
k d  

- - - 2~(x.)~kf(*,)cos(*,-8*) I + 2iJ(” 9 . k)eikf(xj)cos(q-b’L (3.53) 
where yk := k ( x / n ) ,  k = 0,. . . , 2 n  - 1. 

After solving these linear systems, we obtain the respective approximate solutions #(”) 
at any point o < x < k, by replacing the values #f)((yk) at yk = k(x/n) ,  k = 0, . . . ,%-I 
in equations (3.50) and (3.53). 

Finally, from this method we have the following result: 

Theorem 5. Since equation (3.27) has a unique solution and the kernels MI(x. y) and 
Mz(x,  y) as well as the functions p’(X) and eik‘* are continuous, we have: 

(i) the approximating linear system (3.52) has a unique solution for sufficiently large n; 
(ii) for n + bo, the approximation solutions #@) converge uniformly to the solution 4 

In addition, if @’(x)  and eik’x and S are analytic then the errors - #llm decrease 
of the integral equation (3.27). 

exponentially; i.e. I]#“) - #]Im = O(e-ns), where s z 0. 

Of course, we have a similar convergence result for the second case. 
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4. Ambiguities with Be = ek + 6 at k e d  energy 

Now we present the numerical construction of equivalent scattering problems. We determine 
scatterers which give the same scattering amplitude for two fixed energies for all illumination 
angles. The observation angles are fixed in such a way that there is always a difference of 
a fixed value 6 between the observation angle and the illumination angle. The scattering 
problems are treated with one discontinuity curve, without diffuse scattering (i.e. we consider 
the scattering amplitude Ao) and only in the Bom approximation. 

PI P2 

Figure 2. Ambiguities with = Ok + 6 at fixed energy. 

For the construction we assume that SI and SZ, the curves of two scattering problems, are 
star-shaped (see figure 2) with respect to the same centre. Their equations are RI = fi (e) 
and RZ = &(e) and their singular data are denoted PI@), pi(@), pz(0) and pi@). All 
these functions are 2n periodic. To summarize, PI is characterized by (RI@),  P I @ ) ,  
PiCO)}  and 4 by {Rz(e),  Pz(O), p@)}. For the sake of simplicity, we choose a circle for 
the discontinuity curve of 4. 

Our goal is to construct the singular data &(e) and &(@) supposing that {RI(@),  p1 (e), 
Pi (6')) and RZ are given, such that we obtain the same amplitude for a given value of k 
for all the illumination angles, Oh, and the observation angles, Ow, satisfying the condition 

So, to obtain this, we start from the Born approximation relation (2.26) which gives for 
@kc = eh  f 8. 

@k, = ek  + S the following expression: 

A & , ( @ ~ )  = 2 1(e)e-2ixf(8)si'"(S/z)sin(8-8r) I" 
e-W(@) sin(W) ~ W - 8 k - s i W Z ) l  

One can notice that for fixed values of k and S is a 2n periodic function of 
the illumination angle ek .  Therefore we calculate the Fourier coefficients of A&S(Bk)r A,,, 
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and afterwards the coefficients B,$)*(') and C:)*@) defined by the following expressions: 

(4.55) 

(4.56) 

(4.57) 

We note that for m fixed there are two equations for four unknowns. To get four equations 
we choose two fixed energies. One could also choose one energy but two different radii 
and obtain three equivalent problems. 
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F i e  3. scattering problems with 6 = 1.605n with for PI: RI = 1 + 0.2sin28, f i ~  = 0. 
a; = O.M(cos0 + cos28) and P2, R2 = 1. 
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;hope of discontinuity of P '  

0 
;hope of discontinuity of P: 

0 
4 . 5  ab 1.5 

n 

Figure 4. 
RI =2.4/[l.44cos2(%) +4sin2(B)1 and for 9: R2 = 1.6. 

Scattering problems with 6 = 1.605~ with for PI: 01 = 0.005, p'l = 0. 
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S h o p  of discontinuity of Pl  shape of discontinuity of P i  

Figure 5. Scanering problems with 6 = 4n/3 with for PI: RI = 1 + 0.2sin14(8 + n/8)1. 
= 0.01, pi = 0.02 and for &, R2 = 1. 
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shope of discontinuity of P1 

I 3  

shape of discontinuity of P2 
'a I 

2107 

Figure6 Scatteringproblemwith6 = 1.6n/Zwithfor Pi: RI  = (I+O.Zsin[4(~+~/4)1)(1+ 
O . l s i n [ 8 ( 8 + n / 4 ) ] ) , ~ ~ = 0 . 0 3 , ~ ~ = 0 . 0 5 a n d f o r 9 , R z = l . Z .  
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n n 

n n 

n 
e (md) mqle  B (md) 

Modulus ot energy k-3.5 ok 
, O b ,  0"wp"d. 01 P I  
l O b l  Q"wl""* d PZ 

0.M 

0.M 

000 

mgle e (roa) O y l e  8 (rad) 

Figure 7. Example of variation of the energy between the values ki = 3 and k~ = 3.6 for the 
equivalent problems defined in figure 3. 
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77 

n/2  

0 

4 2  

ff -ff 

o,m . 
angle 6 (rad) 

Phose for 6=295 of : 
bbl ompliludc of P1 
bBl ompl4tudc Of P2 

0 

- 4 2  

Figure S. Example of variation of the 6 diffmna between the observation angle and the 
illumination angle around the value 61) = 1.605~ rad for the equivalent problems defined in 
figure 3. 
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,ori shape of discontinuity 
shape of discontinuity 

...... 

.. ._ . . -....I -3.5 

-10 -la 00 L5 

singular dofos of PZ and P3 

0.0, 

0 0 5  

*,I 
MCduIus at energy k-3 Of  : 

Figure 9. Scattering problems with 6 = 1.605n with for PI  : RI = 1 f0.2sin28, 
@; = O . O ~ ( C O S B  + ~ ~ 2 8 ) .  far pZ, R~ = 1 and for p3, R~ = is. 

= 0, 

The numerical examples are shown in the following figures. For each figure, we 
represent the characteristics of the original scattering situation PI. i.e. { R I ( ~ ) ,  p1(0), 
p i @ ) } ;  the chosen circular discontinuous curve of Pz; and its singular data p @ )  and p"') 
determined so that PI and PZ are equivalent. We show the Born approximation of the 
scattering amplitude for the two chosen energies kl and kz, with all illumination angles and 
observation angles such that a fixed difference of 8 exists between the observation angle 
and the illumination angle. Further, we represent the total scattering amplitude of PI and 
Pz for the same conditions (energies, illumination and observation angles) to verify that the 
equivalence constructed with the Born approximation is still true for the total amplitude. 
These exact scattering amplitudes are calculated by means of the Nystrtim method. 

From these examples we can see that the exact scattering is still ambiguous although 
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shape of discontinuity 

P3 with R=1.5 

0.0 

- 1 . 6  .. .__.._. -' 

15 

2111 

singulor datas of P1 singular dotos of P2 and P3 

0.05 --P ........ 0 -@] 
0,- .................................. ........................ 

. _  : ; ; .  . .  i i  i t ? : ,  i :  P!-:k - 0 , s  O D I  j : : :; :, i i :  : : ..; : ; .; 

-0 10 

4 . 1 4  

the second chosen curve is fixed (a circle). 
Figure 7 represents an example of the evolution of the amplitude according to the energy 

in the range of values between kl and k2. The second evolution example (figure 8) is for a 
range of values of 6 taken around 60. The values kl, kz and 60 are the values for which the 
two equivalent problems have been determined. With the first example we can see that the 
ambiguity depends weakly on the energy. The second shows that the construction (for this 
example) depends weakly on the chosen difference between the observation angle and the 
illumination angle. A physical situation corresponding to this type of variation is realized 
when there is a fixed seat for the illumination and a fixed seat for the observation (but where 
the scatterer can turn around itself). 

Figures 9 and 10 are examples where three equivalent problems are constructed for one 
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given energy. 
In conclusion, we also show another realistic measurement situation (see previous 

paper [3]) (fixed illumination angle, fixed observation angle with a scatterer turning around 
itself) where uniqueness is still not assured because we have weakened the hypothesis of 
Nachman's theorem by too much. These examples are another warning for the use of 
reconstruction methods in nondestructive sensing. 
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