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Abstract. The determination of the shape of a scatterer by non-destructive methods, such
as scattering experiments, raises the question of indetermination or ambiguity problems for
the scatteret’s shape, depending on the given scattering data. These ambiguity problems are
discussed here by means of numerical constructions of equivalent scattering problems, ie. we
determined scatierers that produced the same scattering amplitude in given conditions {fixed
energies, fixed incident angles and/or directions of receivers). This construction is given in the
context of a generalized scattering theory that takes into account impedance discontinnities inside
the seatterer, We started with a scattering problem defined by a discontinuous curve of arbitrary
shape and defined by boundary conditions. Then, a circular curve with appropriate boundary
conditions was deterrined such that these two scattering problems yielded the same scattering
amplitude within the given conditions. We also present numerical results for two particular cases
of the generalized scattering theory, calculated by means of the Nystrém method. We used these
results to verify that the equivalence obtained in the Bom approximation holds for the exact
scattering arnplitudes.

1. Iniroduction

From previous results [1, 2], we know that the reconstruction of a finite scatterer by scalar
wave diffusion is unique if the scattering data are known for all illumination angles and all
receiver directions at a fixed energy. We have already shown [3] that if these conditions
are weakened, we do not keep uniqueness of the shape determination. This paper gives
further examples and demonstrations of this point. In particular, we present a different
ambiguous case which contains thé backscattering. We use the scattering theory in the
Sabatier framework [4] corresponding to an impedance equation with discontinuity curves
corresponding to a jump in the impedance and/or its normal derivative. We specialize to
the two-dimensional case as in [3]. Between these curves, the scatterer is assumed to be
inhomogeneous, only allowing a smooth variation of parameters, such that the impedance
is twice differentiable. We consider this model concentrating on the part that takes only
discontinuities into account. In section 4 of [3], we showed that this restriction was relevant.
Here we present & numerical treament of two particular cases of an impedance equation
without diffuse scattering and we calculate the exact scattering amplitude using the Nystrém
method, with a particular decomposition used by Kress [5] in order to isofate the logarithmic
singularities of the two-dimensional case. Finally, we present a construction method for
equivalent scattering problems and discuss numerical examples.
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Figure 1. Scattering problem with discontinuities: shape of discontinuities.

2. The scattering problem

We start from the impedance equation
(@ 2dive® grad +&% — V(x)ok, x) =0 2.1

where k, x & R?, & > 01is defined inside domains ©1, Qa, ..., Qw41 such that ; (2, =&
forany i # j, R? = Z:Qr Q. S is the external boundary of £; and the internal boundary
of §11. The domains are ordered from £ to £2y41 and are all finite except Qp..1, which
extends to infinity in all directions (see figure 1). In addition we assume that each S; is C*
and that ¢ is C? inside R2\S, where S = UY | S;, with e(x) and da(x)/dv, going to finite
limits at any point x; € §; as x — x; inside the domain ; or ;4;, where v is a vector
normal to S; and pointing outwards, i.e. in £;4. At any point x, € S, by labelling the +
and — sides of v, as external and internal parts, we can characterize the jump of e and its
derivative throughout §), by the following ‘singular data’:
(i) Transmission and reflection factors

1 g n_1[4_ 4
t, 2oy ef |t 2o o |

(i) Slope factor

5, 1[gradoc;__gradaj}‘

il —
p, 2 oy o)

The impedance scattering problem was studied by Sabatier [4] in the three-dimensional
case, Here we present the results for the two-dimensional case [3], first we have the
following theorems.

Theorem I. ¢ is a solution of equation (2.1} if, and only if, the function ¥ 1= xep is a
solution of the chain of Schrodinger equations

A+ =V —a Aok, x) =0 x e R\S 2.2

coupled with the condition of continuity of ¥/ and a(3¥/8v) — ¥ (3e/3v) through S.
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Because of this theorem, there always exist two equivalent formulations of the same
physical problem and it is uvseful to go back and forth from one to the other. In the
impedance formulation of the scattering problem, ¢(k, x) is a solution of

("2 dive® grad +42 — V(x)elk, x) =0 xeR? 2.3)

@s = w(x)p(k, x} —exp[ik - x] is Sommerfeld outgoing, i.e. in two-dimensional cases:

x . 1
(H - grad gas(x)) —ikps(x) =0 (_—“IIII /2) x| = 0. 2.4)
In the Schrédinger chain formulation, ¥(k, x} is a solution of
(A+12—V —a~' Ad)gr(k, x) = 0 x e RAS (2.5)
-+ + a a
Tyt oy W)y )
Y /et () = () e (x) xes (2.6)
Yk, x} — explik - x] is Sommerfeld outgoing. 2.7

We recall that this Schrddinger chain formulation was used to derive a generalized Lipmann—
Schwinger equation and a scattering amplitude in two parts [4]. One part is due to the
discontinuities (related to (2.6), and denoted Ap); the other is due to diffuse scattering in
the presence of discontinuities (related to the potential V 4 eAe, and denoted A;).

In this paper we consider only the part due to the discontinuities. Using the same
notation as in the previous paper, we denote yy, as the solution to the scattering problem
with only discontipuities, i.e. the solution of the following system:

(A + ED ik, x) = 0 x e RAS

3 '!'m

Yin/et and opm— — 1,Um contmuous/S (2.3)

Yin(x, ¥) — exp{lk - x] is Sommerfeld outgoing.

In order to solve this system we write u(x) i= ¥, (k, x) — %, with
N N a0
w(xy=Yy fs ds(z) B(z, X)) + ) fs E@—@0Y@ @9
=Y =L z

where ®(x, y) is the Helmholtz—Green function, i.e.
’ i
O,y = B (kllx—y)  xyeR% xsy. (2.10)

As in the three-dimensional case, u{x) satisfies (2.8) as well as the Sommerfeld
condition, We determine ¢; and ¥; by the continuity conditions (2.8), obtaining

¥ =2Be** + 889 + BK Y
eikx (2.11)
o+yy = 23

—28'¢** 4 BTy ~ 'K + pK'$ — f'S9
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with

Y= forx e §;
ot (x) — o (x)

ot (x) o (x) o't (x) + ' (x)

PO Fmrew PO T T erew T wrrew
and the surface operators S, K, XK', T are defined by
6@ =2 [ s@oEnsO  xes 1)
&y ) = f $@) 5@ Df@  xes 2.13)
(Kfjf)(x) = 2[5‘, ds(z 3 x e 8 (2.14)
@0 =20 [ a5 —@Af@ e, @.15)

The following result is essential:

Theorem2. We assume that 8, 8/, v, ¥ are in C1(S) and ¢ in C(S). f N[1-B/(1+8%] =
0 and N(1 — BK) = 0, then the system (2.11) has a unique solution

¥ = (1 - BE)"18(2¢%* + 8¢) (2.16)
¢ =[(1+ 91 — B ' A= @2.17)
with
ikex
A% =255 2l + (1L + FK — BTY - BEOTBIERT (218)
B=—(y1+ B KY1 - BK) 188+ BK' — B'S + C (2.19)
C=T1~-BK)'g5+ 81 (2.20)

Progf. To show this result, we used the Riesz-Fredholm theory for compact operators.
The uniqueness is assured because the kernels N[1 — (B/1+ 82)] and N(1 — §K) are null.
The existence for ¥ is guaranteed since SK is a compact operator. For ¢, the problem
is with the operator T', as it is not bounded, but here it is shown as a product with other
operators. Sabatier has demonstrated that (1 + 8%)~' B is a compact operator. For more
details see [4]. O

Now we define the scattering amplitude Ag, which is related to vy, and is due to the
discontinuities only. To obtain it, we apply Green's theorem to o (k, y) and P(x, y) inside
the domain defined by |y[ < R and y € Qy...1, before we let R — o0, and we obtain

1 elilial+er/4)

— alX
il ) = &~ D

1
Ao([k|%, k)-[—o(l |1/2) {2.21)
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with

i a n k’
Aok, k) = fs i [w_agll ik )Yk, y)] ds(») +a(I 111 /2) (2.22)
N ¥

where k' ;= kX.

There is another expression for Ag in terms of ¢ and . To obtain it, one puts
the asymptotic expansions of ®(x, y) and 3P (x, y) /8v; inside the definition (2.9) of &,
obtaining

pilklx|+(r/4)]
(8zk)'/2 x|/

$in(k, x) = "”+Z

j=1

fs ds() e 7p(y)

el |+ /4)]

Z (3,1;5)1/2 |72 fs . ds(y) (vy - k2)e " F i (y). 2.23)

i=

Together with (2.21), one finally gets

Aol 1) =1y f ds(y) (vy - k’)e"'k'yw(wZ f | ds0)e74() 224

J=1

where &' = kx.

It is possible to obtain the calculations of the first- and second-order terms with respect
to the potential’s size and to rp, sp, ;. In fact, with the assumptions of theorem 2, we can
derive the following expansion up to second order in i and ¢. .

ikx ik.x
b =2p7 ~ 286"+ 28K'5 - F5B)
+2(BTp — BK'B — KB+ B Sﬁ’)c""" + 0UIBIP) (2.25)
lkx

+ O(IBIP).

W =28e** + 2(BKB — BSP )e"”-i-ZﬁSﬁ

We get the scattering amplitude at the first (Born approximation) and second order (quadratic
approximation), by using relation (2.24) with these expansions of ¢ and ¢.

The result can then be reduced to the simplest form by using the standard equivalence
[4], which in the Born approximation is

N
AQR ) ==2) f ds(z)ﬁ(z)g—[e‘("""'“]-{-zz f 85(2) B @7, (2.26)
=08

3. Numerical resolution of two particular cases

Now we present a numerical solution for ¥, in two special cases. In the first, only de/dv
is discontinuous and in the second the relative discontinuity o*(x) /e (x) does not depend
on the position of x on the surface. We recall that the general case, where ¢ and ¢ are
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defined by (2.17) and (2.16), is much more difficult to solve because the operator T (in
particular T;;) is not compact; a problem which must be circumvented.

In order to solve the integral equations, we use the Nystrdm method and a particular
decomposition of their kernels to circumvent the logarithmic singularity. This is done by
applying the Kress method [5, 6] (a numerical treatment of exterior boundary-value problems
for the Helmholtz equation expressed by means of integral equations).

First, we give results for the unicity and existence of i, for these particular cases. We
then present the decomposition of kernels to be used in the Nystrém method. Finally, we
give the systems that are to be solved numerically and a convergence result.

3.1. The two particular cases

The first case is & € C(R?). In this case we have 8 = 0 and from equations (2.17) and
{2.16) we obtain the following system

=0  (1+p5)p=—2p"*, Y

Theorem 3. Tf B’ € C(S) and § is a bounded surface belonging to the class C? then
(14 ,6’8‘)'1 exists as a bounded operator on C(S). The solution of the system (3.27) is

=0  ¢=-201+g8) " gk (3.28)
Proof. 'We also applied the Riesz—Fredholm theory for compact operators. Using the result

for the homogenous chain in [4], we know that if there exists a solution, it is unique. The
existence holds in general because §'S is a compact operator on C(S) [2]. O

For the second case, the relative discontinuity ¥ (x)/e~(x) does not depend on the
position of x on the surface. We introduce the function o (x) defined by
ons1(x) =1 x € Que
0;(x) = o (K)o~ (x) /et (x) xe; i=1,...,N.
So to find 1y, we pose v := 1 /o which solves the following system:
(B +EHV(E) =0  xeRAS (3.29)
v e

v(x) and ¢ [-— - 8_:| (x) continuous through S {3.30)

v
odr dv

v(x} is Sommerfeld outgoing (2.4). (3.31)
‘We seek v(x) by using a single- and double-layer potential ansatz, which can be written as

N N
ad
v{x) = f\:'f .[s, ds(z) ®(z, x)¢;(z) + J;fs, ds(z)a—vz(z, X (2) (3.32)
and which satisfies (3.29) and (2.4). We obtain the following system by then imposing the
continuity conditions (3.30).

¥ =0 (3.33)
o T ot ol dkx _‘aeik-x
{(1—-BK 4+ p'SYp =28 +28 ™ (3.34)
with
; 0i—o? and 5= (o2 fory)(Bers fOy) — (af/a_)(aa_/av)‘

o2 o2 of +oZ

Notice that B does not depend on the position on the curve but A’ does in general. As in
the previous case, we have a result of existence and uniqueness.
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Theorem 4. If B, B’ € C(S) and § is a bounded surface belonging to the class C? then

(1 — BK' + ') exists and is a bounded operator on C(S). The solution of the system
(3.34) is .

y=0

i ek (3.35)
b=-201-FK +F8)" (ﬁ’e"” +25 a:u ) .
Progf. The proof is similar to the previous one. Recall that K" and §'S are compact
operators,. a

Remark. We recall that the previous results are valid for more than one curve. The
following numerical method is also correct for more than one curve, but, for the sake of
simplicity, we take only one. If we take several curves, the principal difficulty is only the
size of the linear system to resolve, which increases quickly with the nuomber of the curve.
In effect, if you have a square matrix m X m for one curve, you obtain a matrix pm X pm

for p curves.

3.2. Numerical resolution

For the numerical resolution, we assume that the curve § is star-shaped and belongs to the
class C2. Tts equation is of the form R = f(), where f is a 2x periodic function. Then
for two points x, y of § we can write

— f(ax) cos 6): | — f(e )0089
* ‘“‘(f(e,a sinax) and - yi= (f(f);) siné, ) ‘

Now, to solve the integral equations (3.27) and (3.34) we isolate the logarithmic singularities.
By using Kress notation [5], we obtain the following parametric form of § and K"

2n .
S¢(x) = A M(x, y)¢(y)db, (3.36)

2 B
- BK'p(xy=5 fu L'(x, y)¢ d8, (3.37)

with

MGx,y) = SH (e, W F26) + £746) (338)

L'(x, };) = %[fz(f?x) — F(B:) F(By) cos (6 — 6x) + f'(6:) f(6y) sin(fy ~ ;)]

26+ F28,) B (r(x, y)) -
X \/fz(f’x) + 26y rix. ) ‘ (339

and

r(x, ¥) = [F36:) + F26y) — 25(8:) F(8y) cos (8 — 6,)1'/. (3.40)
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The logarithmic singularities of 8 and K’ are isolated if we write

M(x,y) = My(x, y)log4 [sin2 (—8"—;-211] + Ma(x, y) (3.41)
L'(x,y)=L'1(x, y)log4 [s,m2 6~ ’)] + L3 (x, y) (3.42)
with
Mix, 3) = —5—Jolkr(z, Y0 726) + 776 (3.43)
Ma(x,y) = M(x, y) — Mi(x, y) log4 [sinz (ﬁ%@] (3.44)

k
L(x,y) = —z—n:[fz(l?x) ~ F6F (By) cos (By — ) + f'(Bx) £ (By) sin(By — 65)]

726, + 7(8,) Ti(kr(x, y))
FAe)+ 2O rxy)

(3.45)

L'y(x,y) = L'(x, y) — L1 (x, y) log 4 I:sin2 @—2_;0’)} ) (3.46)

In particular, for y = x, using the expansion of Hy [6], we have

Y R T LMY N | W rereesmprron
Mz(x.x)—{2 poll 10g[4(f @)+ f (&)):I} F2(62) + f(6x)

, 1 £20,) + 2776 - FE) ')
L) =Ll n =g 72@) + 7260 ’

The Nystrdm method relies on approximating the integrals by quadrature formulae. To do
this, we set the following expansion

2n—1
Mi(e, e = Y Mix, 3 GOLY () (3.47)
k=0

where ¢(")(yk) are the values of ¢ at the 2n points y;, y :=k(z/n), k=0,...,2n -],
and the L(") (y) are the Lagrange basis for the trigonometric interpolation defined by

1 n-—l
Ll(cn)(y) = 7 {1 + Zcos I8y — yi) +cosn(6, — yk)} . (3.48)
7 1=0
Hence we obtain

B, ~
f a6y M1 (x, 3) 1034[5111 ( }b( Y 3 MG 300 GORY )

k=0
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with R™ (x) := f;” d8, log 4[sin®((8; — 6,)/DIL (y).
This, after a few calculations, leads to [5]

r!-—l

R("}( y=—— Z 7 cosl(ex Ye) = =3 = cosn(6y — Yi)- (3.49)
The regular parts of the integrals are calculated by a trapezoidal method. We use the

same type of approximation in the second integral equation and we obtain the following
approximate equationS'

690+ B'@) Z [RE @65, 30 + Mo, 30| 80 (30) = —2'(x)e I ot0=80

k=0
(3.50)
() gt = (1) 7 ()
$P@ +E® Y | RO@MIG, ) + —Malx, 30 | 67 G
k=0 -
+5 Zj [P 3 + 2020, 30| 600
2‘3’ ikf (8:) cos (B~} “+ Ziﬁ(vxj . k)eikf(ex) CUS(ﬂx—Bk). (3.51)

Finally we must solve finite linear equations obtained by writing equations (3.50) and
(3.51) at quadrature points ¢’.‘(xj), xpi=f@/n), § =0,...,2n — 1. These systems are:

B0+ ) S [REP G (o1, 30 + S Moy, 30 | 4800

k=0
— — Zﬁ (x_)eikf(xj)cns(xj—ﬂk) (3.52)

¢ (x) + Z B o) [RE M1 Gej 70 + = Mag, 9| 48 00

+ 8 Z [Rf"’(x,)L'l(x,, ¥e) + —sz(xj, y,a] & (i)
k=0

= — 213 (xj)eikf(x,-)cos(x,—ﬂk) + Zlg(l{x . k)cikf(xi)cns(xj—ﬂk) (353)
i

where y. :=k(m/n), k=0,...,2n— L.

After solving these linear systems, we obtain the respective approximate solutions ¢®™
at any point 0 < x < 2x, by replacing the values qbk (yk) aty =k{mw/n), k=0,...,2n-1
in equations (3.50) and (3.53).

Finally, from this method we have the following result;

Theorem 5. Since equation (3.27) has a unique solution and the kemnels M;(x,y) and
My(x,y) as well as the functions g/(x) and ei®* are continuous, we have:

(i) the approximating linear system (3.52) has a unique solution for sufficiently large n;

(ii) for n — oo, the approximation solutions ¢ converge uniformly to the solution ¢
of the integral equation (3.27).

In addition, if #’(x) and e¢** and § are analytic then the errors [[¢™ — ¢ ||, decrease
exponentially; i.e. |¢® — ¢llc = O(&™™), where 5 > 0.

Of course, we have a similar convergence result for the second case.
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4. Ambiguities with @y = 8, + § at fixed energy

Now we present the numerical construction of equivalent scattering problems. We determine
scatterers which give the same scattering amplitude for two fixed energies for all illumination
angles. The observation angles are fixed in such a way that there is always a difference of
a fixed value § between the observation angle and the illumination angle. The scattering
problems are treated with one discontinuity curve, without diffuse scattering (i.e. we consider
the scattering amplitude Ag) and only in the Bomn approximation.

tal]

Figure 2. Ambiguities with 8 = 8), + & at fixed energy.

For the construction we assume that S; and S,, the curves of two scattering problems, are
star-shaped (see figure 2) with respect to the same centre. Their equations are R; = f1(8)
and R, = f3(6) and their singular data are dencted £1(6), B;(f), B2(6) and B}(6). All
these functions are 27 periodic. To summarize, Py is characterized by {Ry(8), B:1(6),
B1(@)} and P, by {R2(8), B2(0), B5(6)}. For the sake of simplicity, we choose a circle for
the discontinuity curve of P,

Our goal is to construct the singular data 8,(8) and 5;(6) supposing that {R,(8), 8:(8),
B1(8)} and R, are given, such that we obtain the same amplitude for a given value of &
for ali the illumination angles, 6k, and the observation angles, &, satisfying the condition
O = O + 4.

So, to obtain this, we start from the Born approximation relation (2.26) which gives for
61 = 8 + & the following expression:

n
Agk 5(9.':) — zf de Z(B)e—zikf(ﬁ)sin(r’iﬂ)sin(9—93)
. 0
s [ 8\ oirioveinc/one .
+ diksin - f db g(®) sin (9 — 6 — sin 5) e~ 2 ) sin(é/2) sl -~y —sin(3/2)]
[
d = . &8 ik f () sin(5/2) sin[@ i
— 4k sin > f df #(9) cos (a ~ By — sin E) ¢ BRFB)sinGé/2) sinl6~6, ~sin(8/2)]
0
with
1O =B OO+ 20 2@ =p0)E)  h6)=pE)O) (4.54)

One can notice that Ag +.5(0%) for fixed values of k and & is a 2 periodic function of
the illumination angle 6. Therefore we calculate the Fourier coefficients of AOB‘ 1.5 Ok)s Anm
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and afterwards the coefficients B{*® and C{@ Jefined by the following expressions:

B(l)-(z) _ A(U.(Z) + A(_U-(z)
[ " m m with m ¢ N*t*.

D2 _ a2 (1302}
C,S,)()—Afn)“—A_m
The two problems P; and P, are equivalent if

AD = A®

Bl = g2 m e N*,
1 2,
e =@

After a few calculations we find the following infinite system:

poRe B2 +wRe f7 = AP (4.55)
fim Re B 4+ v, Re P = B : (4.56)
pon I B2 + v, Im g2 = 'V (4.57)

with
Mo = 2?[R2]m(2kR2)
a
vy = 2k sin -2-R2[Jm+1(2kR2) — Ju—1(2kRy)]

b 8
aP=2["as (1(9)10(2kﬁ (6 + 2esin S g(0)1 2k (9)))

2%
BY = f a8 I (9) J,, (2k£1(6)) cos mB
1]
5 i 4
+hsiny f 48 gD (O)Jpn1 QK1 (6)) — s (261 (0))] cOSTIO
4]

2
—-ksing f d6 AV @) a1 QkFL(O)) + Jou1 (Chef1(8))] sin mo
0

21
= _ f d8 1V (8) J,, (2K£1(8)) sinmf
aQ
2
— ksin g fo d6 g @) [Jm+1(2Kf1(6)) — Jr—1 (2kf1(6))]sinm

2
— ksin % f d8 AW (@) Jpp1 Pk F1(8)) + Jre1 (2KF1(0))] cos m6.
0

We note that for m fixed there are two equations for four unknowns. To get four equations
we choose two fixed energies. One could also choose one energy but two different radii
and obtain three equivalent problems.
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30 30 -
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oo7 o.ce
. Singulor datos of P1 1 singular datos of P2
os 4 % — g {e ; oasq T %{gg
.03 ] 0,10 4
H o,
oot - ,-'- 0.05 1 H
~0.03 - s .-."-..\..-':
4
005 - -0
7z P 7z 2nm OOF 7z = /2 2n
angle @ {rod) angle 8 (rad}
m ™
Phase at energy k=3 of! Phase at energy k=3.6 of:
——= Bara qpproximotion of P1 and P2 r—u= Born pprnnmctlon of P1 and P2
r===- {glol omphtude of «==-= toiol omplitude of P2
e {odod aenplitude of P1 reemn- Rotal omplitude of PY
w2 w2
Q 04
-n/2 /2
- -5
/2 " 3n/2 25 [*] nS2 T In/2 In
angle & (rod) angte ¢ (rog)
025 0,25

Modulus ot energy k=3 of;
0.23 o === Bom oppcoximatign ol P{ ond P2 0.23
w==== lolal amplitude of P1 +=-== lotol rplitede
~ lolel omplitude of P2

Modulus ot energy k=3.6 of:
— Bora Qpprommnlgn of P1 and P2

0204 ™ 0,20 4 e total omplitude of Pz

o 0.8 4

0.55 215 4

LR 013 1

0.10 4 010 4

0,08 o.08 o

oos - 0,05 4

oos 4 Q03 4

il R R ey M - MM SR =y sk

ongie & (rod) engle § (rad}

Figure 3. Scattering problems with § = 1.6057 with for Fi: Ry = 1 + 0.25in28, §; = 0,
| = 0.03(cos@ +cos26) and P3, Rz =1.
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Figure 6. S;:attering problems with § = 1.6/2 with for P;: Ry = (14-0.2sin[4@ +m /AN (1+
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Figure 9. Scattering problems with § = 1.6057 with for P, @ Ry = 1+ 0.2sin28, §; = 0,
B = 0.03(cos 8 + c0s28), for Pz, Ra = 1 and for Ps, Rs = 1.5.

The numerical examples are shown in the following figures. For each figure, we
represent the characteristics of the original scattering situation Pi, ie. {R1(8), Bi(6),
B1(6)}; the chosen circular discontinuous curve of Py; and its singular data 8® and g'®
determined so that P, and P, are equivalent. We show the Born approximation of the
scattering amplitude for the two chosen energies %; and k;, with all illumination angles and
observation angles such that a fixed difference of & exists between the observation angle
and the illumination angle. Further, we represent the total scattering amplitude of P, and
P, for the same conditions (energies, illumination and observation angles) to verify that the
equivalence constructed with the Born approximation is still true for the total amplitude.
These exact scattering amplitudes are calculated by means of the Nyswdm method.

From these examples we can see that the exact scattering is still ambiguous although
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Figure 10. Scattering problems with § = 1,605z with for P: Ry = + 0.2sin[4(@ + 3';::)],
£ =0.01, ﬁ; =0.03, for P,, R, =1 and for P3, Ry = 1.5,

the second chosen curve is fixed (a circle).

Figure 7 represents an example of the evolution of the amplitude according to the energy
in the range of values between k; and %;. The second evolution example (figure 8) is for a
range of values of § taken around 8. The values &, k; and & are the values for which the
two équivalent problems have been determined. With the first example we can see that the
ambiguity depends weakly on the energy. The second shows that the construction (for this
example) depends weakly on the chosen difference between the observation angle and the
illumination angle. A physical situation corresponding to this type of variation is realized
when there is a fixed seat for the illumination and a fixed seat for the observation (but where
the scatterer can turn around itself).

Figures 9 and 10 are examples where three equivalent problems are constructed for one
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given energy.

In corclusion, we also show another realistic measurement situation (see previous

paper [3]) (fixed illumination angle, fixed observation angle with a scatterer turning around
itself) where uniqueness is still not assured because we have weakened the hypothesis of
Nachman’s theorem by too much. These examples are another warning for the use of
reconstruction methods in non-destructive sensing.
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